

Metabolic Expenditures During Extravehicular Activity: Spaceflight Versus Ground-based Simulation

Jill Klein, M.S.¹
Johnny Conkin, Ph.D.²
Michael Gernhardt, Ph.D.³
Ramachandra Srinivasan, Ph.D.¹

¹ Wyle, Houston, TX; ² Universities Space Research Association, Houston, TX; ³ NASA Johnson Space Center, Houston, TX

Metabolic Data

- Collected at the Sonny Carter Training Facilities Neutral Buoyancy Lab (NBL)
- To establish a baseline
 - For each crewmember
 - For each Extravehicular Activity (EVA)
 - EVA Acceptance Test (EVAAT) or Final

Ground-based Data

- Monitored during flight
- Processed postflight
- Met rates compared to NBL baseline data

Carbon Dioxide (CO₂)

- Sampled from return umbilical before venting out
- Concentration measured using a CO₂ analyzer

Gas Flow

- Digital outputs from panel flow meters
- Both supply and return flow rates measured

Collection Methods – NBL

Collection Methods - Flight

$VCO_2 = (Flow Rate) \times (CO_2 Concentration)$

Calculations

$VCO_2 = m \times (VO_2) + b$

Met Rate (kcal/hr) = $236.5 \times VO_2$ (L/min) + $66.6 \times VCO_2$ (L/min)

Weir Equation

O_2 Depletion Rate (psi /min) = 2.13 x VO_2 (L/min)

Metabolic Rate - Task Analysis

STS-118 EVA 1

Subject ID Number: 2741

	Time	me Met Rate		∆Tank Pr.	Tank Pr.
Activity	h:mm	(Kcal/hr)	(BTU/hr)	(psi)	(psi)
Post Depress/Egress/Setup	0:00			0	850
Min		143.18	568.14		
Max		564.39	2239.50		
Average		383.93	1523.42		
O2 depletion				69.81	
S5 to S4 Launch Locks	0:25				780.19
Min		212.97	845.06		
Max		616.03	2444.41		
Average		395.79	1570.48		
O2 depletion				63.32	
S5 Install	0:47				716.87
Min		202.19	802.29		
Max		590.91	2344.73		*
Average		404.88	1606.55		
O2 depletion				188.47	
PVRGF Relocate	1:51				528.4
Min		123.03	488.18		
Max		689.56	2736.17		
Average		330.89	1312.99		
O2 depletion			notes sometimes.	108.2	

S5 to S4 Umbilicals	2:36				420.2
. Min		246.91	979.74		
Max		571.11	2266.16		
Average		410.11	1627.31		
O2 depletion				122.3	
S5 Cleanup	3:17				297.9
Min		132.27	524.85		
Max		647.32	2568.57		
Average		387.83	1538.92		
O2 depletion				110	
PVR Retract and Cinch	3:56				187.9
Min		183.75	729.12		
Max		522.24	2072.25		
Average		328.09	1301.87		
O2 depletion				71.59	
Cleanup/Ingress/Prerepress	4:26				116.31
Min		154.78	614.17		*
Max		565.53	2244.02		
Average		327.55	1299.71		
O2 depletion				47.62	
	4:46				68.69
Average Met Rate:		375.63	1490.49		
Peak Met Rate:		689.56	2736.17		
Total O2 depletion:				781.31	
Total Met energy expenditure:		1790.49	7104.66		
		Kcal	BTU		

Task Analysis

Activity	Met Rate (kcal/hr)
Resting	77
Walking	140
Swimming	500
Tennis	500
Jogging	800
Walking up stairs	1100

Representative Met Rates

Average Metabolic Rates - PGT, ORU Translation

All restraint methods combined, p = 0.03. Error bar represents standard deviation.

Average Metabolic Expenditure - PGT, ORU Translation

All restraint methods combined, p = 0.92. Error bar represents standard deviation.

- In general metabolic rates tend to be higher in NBL than in flight
 - Restraint method dependant
 - Significant differences between the NBL and flight for BRT and APFR (buoyancy effects)
 - No significant difference between NBL and flight for free float and SRMS/SSRMS operations
- The total metabolic energy expenditure for a given task and for the EVA as a whole are similar between NBL and flight
 - NBL metabolic rates are higher, but training EVAs are constrained to 5 ½ hours
 - Flight metabolic rates are lower, but the EVAs are typically an hour or more longer in duration
- NBL metabolic rates provide a useful operational tool for flight planning
- Quantifying differences and similarities between training and flight improves knowledge for preparation of safe and efficient EVAs

Conclusions